

Project Risk & Simulation

Nick Grondin

Outline

- What is Risk anyway?
- Risk Attitudes
- Uncertainty
- Simple ROM estimate
- Scenarios vs. Simulations
- Addressing uncertainty through simulation
- How to define risks in an era of simulation

What is Risk anyway?

- The *probability* of an event with <u>negative consequences</u>
- The likelihood of an uncertain amount of loss
- Exposure to a chance event with a <u>negative outcome</u>
- The potential for realization of unwanted, adverse consequences
- The possibility that something unpleasant will happen
- The quantitative measurement of an outcome which can be predicted

The terms uncertainty and risk are often used interchangeably, but they shouldn't be: Uncertainty is objective, Risk is subjective

Risk is in the Eye of the Beholder

- Everyone has a tolerance to uncertainty and a unique Risk Attitude
- Fundamentally a question of whether an event has a material impact
 - Can only be established if asked with respect to what, or with respect to whom
- Different answers depending on the question
 - What is the risk to the project?
 - What is the risk to the department?
 - What is the risk to Canada?

Three Categories of Uncertainty

1. Reducible (epistemic) uncertainty

- Refers to limited knowledge we may have about an artefact
- Can usually 'buy' or obtain more knowledge / data

2. Irreducible (aleatory) uncertainty

- Refers to the inherent variability in a system and cannot be reduced with increased knowledge/information
- E.g. a car's engine RPM varies as you drive down the street
- Not a lack of information it is a naturally occurring process. Therefore we need to provide margin for events materializing from aleatory type uncertainties

3. Error

• E.g. 2+2=5

Simple ROM Estimate (CY\$2000)

Institution	Carleton	University of Toronto	Harvard	Oxford
	CAD	CAD	USD	GBP
Tuition	\$4,000	\$5,000	\$23,000	£16,000
Room & Board	\$7,000	\$9,000	\$11,000	£12,000
Books	\$1,000	\$1,000	\$1,000	£1,000
Car	\$0	\$2,000	\$2,000	£0
Travel (5 trips home)	\$0	\$3,000	\$3,000	£4,500
1-year TOTAL	\$12,000	\$20,000	\$40,000	£33,500
4-year TOTAL	\$36,000	\$80,000	\$160,000	£134,000

Simple ROM Estimate (CY\$2018)

Institution	Carleton	University of Toronto	Harvard	Oxford
	CAD	CAD	USD:CAD = 1.28	GBP:CAD = 1.77
Tuition	\$17,139	\$18,567	\$42,048	\$40,448
Room & Board	\$9,998	\$12,854	\$20,110	\$30,336
Books	\$1,428	\$1,428	\$1,828	\$2,528
Car	\$0	\$2,856	\$3,656	\$0
Travel (5 trips home)	\$0	\$4,285	\$5,484	\$11,376
1-year TOTAL	\$28,565	\$39,991	\$73,126	\$84,688
4-year TOTAL	\$114,260	\$159,964	\$292,505	\$338,751

Scenarios

 A unique set of inputs which represent a possible future

 Typically only considered in small batches (~5-10)

 Often incorporate best/worst bounding cases

FOREX - Scenarios

Simple 'Sensitivity'

INFLATION Assume ±1%

Scenarios & Simulations

 A unique set of inputs which represent a possible future

 An ensemble of scenarios representing possible futures

- Typically only considered in small batches (~5-10)
- Requires thousands (>50,000) of scenarios to be considered

 Often incorporate best/worst bounding cases

 Scenarios range from minor to extreme deviations

FOREX - Simulation

• How to forecast into the future?

FOREX - Simulation

Possible to model using Random Walk

FOREX - Simulation

Possible to model using Random Walk

Simple Example (simulation)

Risks and Simulations

- Traditional 'risks' are more appropriately dealt with via uncertainty analysis, e.g.
 - FOREX risk is a misnomer
 - more accurate to speak of FOREX exposure
- Events that are 100% likely to materialize, aren't risks

Risk registers still have a place in cost estimation

Questions

